National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Endocytic transport in cytokinesis
Koudelová, Kristina ; Libusová, Lenka (advisor) ; Vosolsobě, Stanislav (referee)
Cytokinesis represents a very complex and highly orchestrated process. For many years, the mechanism of animal cell cytokinesis was described as a result of actomyosin ring constriction. By contrast, in plant cells the division was seen as an outcome of vesicle fusion at the cell plate region between two daughter cells. Recent studies, however, uncover the involvement of vesicular trafficking in animal cell cytokinesis. This thesis aims to highlight the importance of endocytic transport and the necessity of its proper regulation. At first, the origin of vesicles is debated. Afterwards, three main types of endocytic vesicles are examined - Rab11/FIP3 endosomes, Rab35-endosomes and PI(3)P-enriched endosomes, along with their function and interacting partners. Finally, the attention is given to the mechanism of abscission and midbody inheritance. Ongoing processes are accompanied by changes in membrane composition, cytoskeleton reorganization and targeted delivery of distinct cargo molecules. Failure in cytokinesis has been implicated in the etiology of many diseases, such as cancer. Therefore, better understanding of associated endocytic trafficking may provide us with new therapeutic strategies.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.